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Commentary

A decision regarding an acceptable level of 
exposure to a toxic agent can be informed by 
quantitative estimates of risk to humans from 
low exposures (e.g., exposures corresponding 
to increased risks of ≤ 10–3). Such estimates 
are often based on responses in animals sub-
jected to much higher exposures. The gener-
ally accepted gold standard for making these 
estimates has been biologically based dose–
response (BBDR) models, which incorpo-
rate information on intermediate steps in the 
disease process [National Research Council 
(NRC) 1994; U.S. Environmental Protection 
Agency (EPA) 2005]. The U.S. EPA (2005) 
cancer guidelines state that “The preferred 
approach [to estimating low-dose risk] is to 
develop a toxicodynamic model of the agent’s 
mode of action (MOA) and use that model for 
extrapolation to lower doses.”  However, the 
National Academy of Sciences (NAS) Science 
and Decisions Committee (NRC 2008), 
which was charged to develop “scientific and 
technical recommendations for improving risk 
analysis approaches used by the U.S. EPA,” did 
not discuss BBDR modeling. The NAS com-
mittee on Toxicity Testing in the 21 Century 
(NRC 2007), which reviewed toxicity testing 

methods and strategies and proposed a long-
range vision and strategy for toxicity testing, 
concluded that BBDR modeling is “still in 
its infancy” and “the committee … does not 
see routine development of the models from 
toxicity-pathway testing data in the foresee-
able future.”

BBDR models are predictive models that 
describe biological processes at the cellular and 
molecular level to link external exposure to an 
adverse apical response. Such models can pro-
vide estimates of the probability of an adverse 
response in humans, expressed as a function 
of quantitative biological variables involved 
in the adverse response. These variables (e.g., 
cell division rates, death rates, or production 
rates of hormones that govern pharmacody-
namic interactions) have physiologic meaning 
and, at least in theory, could be measured. 
At least one variable must be linked to the 
administered dose of the toxic agent. This 
linkage often involves a physiologically based 
pharmacokinetic model that expresses expo-
sure at a target site (e.g., tissue concentration) 
as a function of external exposure.

Difficulties inherent in BBDR models 
limit the models’ ability to provide reliable 

estimates of low-dose risk in humans. In view 
of these difficulties and of the large number 
of chemicals in commerce for which insuffi-
cient toxicologic information is available, large 
commitments of resources to complex model-
ing efforts with the goal of evaluating low-dose 
risk will not be cost effective or informative. 
The lessons learned from 20 years of experi-
ence with BBDR modeling should be taken 
into account when considering how molecu-
lar toxicology and high-throughput screening 
data can best be used to inform low-dose risk.

Applications of BBDR modeling. The focus 
of this commentary is not on BBDR model-
ing per se, but more narrowly on the use of 
BBDR models to estimate low-dose human 
risk. Nevertheless, we wish to acknowledge 
other potentially useful applications of BBDR 
models. Two-stage clonal expansion models 
of cancer that account explicitly for mutation 
of normal cells to initiated cells, clonal expan-
sion of initiated cells, and mutation of initi-
ated cells to fully malignant cells (Moolgavkar 
et al. 1988a) have been used as a framework 
for numerous models for describing the pro-
gression of cancer (e.g., Chen and Farland 
1991; Gsteiger and Morgenthaler 2008; 
Kopp-Schneider et al. 2005; Moolgavkar et al. 
1989, 1993, 1996, 1999; Portier and Kopp-
Schneider 1991; Portier et al. 1996; Tan and 
Chen 1998; Yang and Chen 1991). Such 
efforts, generally known as clonal growth mod-
els, have been useful in generating and/or eval-
uating hypotheses in a number of applications, 
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thereby contributing to a better understanding 
of the biology. These models have also high-
lighted important data gaps. Examples include 
the carcinogenic effects of coke oven emissions 
(Moolgavkar et al. 1988b), diesel exhaust emis-
sions (Chen and Oberdorster 1996), trichloro-
ethylene (Chen 2000), refractory ceramic fibers 
(Moolgavkar et al. 1999), dioxin (Conolly and 
Andersen 1997; Luebeck et al. 1995, 2000; 
Moolgavkar et al. 1996; Portier and Kohn 
1996; Portier et  al. 1996), and formalde-
hyde (Conolly et al. 2003, 2004), the neuro
developmental effects of ethanol (Gohlke et al. 
2005), the developmental toxicity of 5‑fluoro
uracil (Setzer et al. 2001), and evaluation of 
a hypothesized MOA for the disruption of 
hypothalamic–pituitary–thyroid axis homeo-
stasis by perchlorate (McLanahan et al. 2009). 
We encourage continued research to evaluate 
potential applications of BBDR models.

BBDR modeling has the same problems for 
estimating low-dose risk as empirical model-
ing of apical responses. Unfortunately, BBDR 
models have not been useful in estimating risks 
in the low-dose region of interest when setting 
exposure standards. Difficulties in using BBDR 
models for this purpose are conceptually the 
same as those faced when fitting empirical mod-
els to data on apical responses in intact animals. 
Moreover these difficulties are exacerbated by 
problems inherent in complex models.

It is well understood that exposing whole 
animals at low doses and measuring the apical 
adverse responses is of little value in inform-
ing low-dose risk, because the small change in 
the baseline response that one is attempting to 
measure is obscured by statistical uncertainty. 
For example, although regulatory agencies 
may be concerned with protecting humans 
against increased risks on the order of 10–5, the 
width of a 95% statistical confidence interval 
on increased risk in a group of 100 animals 
exposed to a common dose is at least 0.03, 
or 3,000 times greater. (For example, a 95% 
statistical upper bound on the probability of a 
response in 100 treated animals in which no 
response occurs is 1 – 0.05(1/100) = 0.0295.) An 
alternative is to use an empirical dose–response 
model fit to apical responses obtained at high 
doses to estimate low-dose risk. The problems 
with this approach are also well understood 
(e.g., NRC 1983 and references therein): 
Different empirical dose–response models can 
describe the data equally well and yet predict 
widely different estimates of low-dose risk. It is 
less well understood that these exact same dif-
ficulties occur with BBDR models.

To link exposure with risk, a BBDR model 
must incorporate at least one biologic variable 
that is dose related. For example, in a model of 
cancer in which the mechanism is cell prolifera-
tion stemming from cytolethality, division rates 
of normal, but potentially tumor precursor, 
cells may depend on the tissue concentration 

of the parent chemical or a metabolite. The 
options for determining the low-dose response 
for such an intermediate variable are the same 
as those described above for apical responses—
direct measurement or empirical modeling 
from high-dose data. Statistical precision is 
still limited by the numbers of animals. It is 
the between-animal variability that is impor-
tant, and this cannot be improved by making 
many measurements (e.g., in many cells) in 
a few animals. Consequently, just as is true 
for apical responses, statistical variability will 
obscure efforts to measure changes in interme-
diate responses at doses corresponding to the 
small increases in risk of interest in setting of 
exposure standards.

The other option for estimating low-dose 
changes, using an empirical dose–response 
model fit to high-dose data on the intermediate 
response, has the same drawbacks as with api-
cal responses. Although mechanistic informa-
tion may indicate that a particular intermediate 
step is a key step toward toxicity, that infor-
mation normally does not specify the form of 
the dose response for the intermediate variable. 
Consequently, dose–response modeling of that 
variable will be empirical, and the dose response 
for the apical effect will be determined by the 
empirical dose response assumed for the inter-
mediate biological variable (e.g., Crump 1994a). 
For example, if a single intermediate variable is 
dose related and that variable is modeled as 
varying linearly, quadratically, or threshold-like 
at low doses, the apical response will likewise 
vary linearly, quadratically, or threshold-like at 
low doses. Thus, dose–response modeling will 
still be empirical, and different empirical dose–
response models will fit the data on the inter-
mediate variable equally well and yet predict 
widely different risks of an apical response from 
the same low exposures.

BBDR modeling introduces new problems. 
Not only is BBDR modeling of low-dose risk 
subject to the same problems as empirical mod-
eling of apical responses, but these problems 
are also exacerbated by uncertainties inher-
ent in complex models and in the added data 
requirements and heterogeneity inherent in 
those data. Relevance of measurements to the 
mechanism in question will be uncertain. Are 
the responses being measured in the right cells, 
or are the cells at risk only those in a particular 
subclass or in a particular anatomical subre-
gion? For example, data on foci or nodules have 
been used to estimate rates of initiation and 
proliferation, under the assumption that they 
are preneoplastic lesions. However, one cannot 
confidently decide which cells in foci or nod-
ules represent initiated cells or even whether 
the model formulation is correct for those foci 
(Kopp-Schneider et al. 1998). Model conclu-
sions can be very sensitive to these choices.

BBDR modeling of low-dose effects is 
greatly complicated if the toxicant affects 

multiple intermediate steps in the disease pro-
cess. For example, in addition to affecting divi-
sion rates of normal cells, the toxicant may 
affect division rates of initiated cells and death 
rates of both normal and initiated cells. But 
whereas the apical response can be highly sensi-
tive to small differences in birth and death rates 
(e.g., Crump 1994b), measurement of these 
rates, if they can be measured at all, must be 
made in different animals, which are all differ-
ent from the animals in which the apical effect 
was observed. In such a situation, problems 
of interindividual heterogeneity will magnify 
bounds on low-dose risk. One often-overlooked 
advantage of dose–response analysis directly 
between exposure and the frank toxic effect is 
that both can be measured in the same subject.

On top of the uncertainty of the relevance 
of the measurements to the mechanism being 
modeled, there are commonly important 
uncertainties regarding the basic mechanism 
itself. Current efforts by the U.S. EPA to use 
MOA information in risk assessment appear 
often to be stymied by uncertainty as to what 
the relevant MOA is. 

BBDR modeling uses data from the wrong 
species. To the foregoing problems must be 
added the overarching problem that most 
of the data for BBDR modeling come from 
experimental animals. Human populations dif-
fer from inbred animal strains in numerous 
ways, including size, longevity, genetic makeup 
and variability, stress factors, and exposure to 
infectious diseases and environmental toxicants. 
Consequently, the dose response for humans 
is possibly quite different from that for inbred 
animal strains. Often there is not even site con-
cordance in tumors found in different species 
of rodents. Thus, even if we knew precisely the 
dose response in a particular animal strain, there 
would still be large uncertainties in extrapolat-
ing that dose response to humans. Although 
this uncertainty will be present in all efforts to 
estimate risk in humans using animal data, it 
argues that intensive efforts to develop data and 
models for BBDR modeling of specific end 
points observed in animals to compute low-
dose risk may not be a wise use of resources.

Illustrative examples. These problems are 
well illustrated by the experiences with BBDR 
models to date. Perhaps the most telling evi-
dence is that, despite 20 years of effort and 
endorsement of such models by regulatory 
agencies, only a handful of BBDR models have 
been developed for evaluating low-dose risk, 
and not a single BBDR model has gained wide-
spread acceptance for such a use. The examples 
discussed below are presented to illustrate the 
generic problems presented earlier.

Many of the BBDR modeling efforts to 
date do not incorporate any biological data on 
one or more key intermediate variables. Lacking 
such data, empirical dose–response models are 
assumed for those variables, and parameters 
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in those models are estimated by fitting the 
resulting complete model to apical responses in 
intact animals. Such models have several poten-
tial advantages over purely empirical models, 
including the ability to incorporate the effect 
of varying dose levels in a natural way and the 
ability to test hypotheses about toxic mecha-
nisms within the limits of the model. However, 
estimates of low-dose risk from such models are 
driven by the assumed empirical dose–response 
form(s) for the intermediate variables and con-
sequently are subject to the same uncertainties 
as estimates made from empirical dose–response 
models fit to the apical response.

A two-stage model of lung cancer risk 
from exposure to refractory ceramic fibers 
(Moolgavkar et al. 1999) based on rat bio-
assay data provides a good example of such 
models. The final model incorporated only 
the mechanism of mutation from normal to 
initiated cells. However, no data were avail-
able on initiation, and the dose response for 
initiation was modeled using empirical curves 
whose parameters were estimated by fitting 
the complete model to the frank tumor data. 
Low-dose tumor risks predicted by a quadratic 
model for initiation diverged at low dose from 
those predicted by low-dose-linear models and 
were about 100-fold smaller at an exposure to 
1 fiber per milliliter of air, even though the 
models provided similar fits to the data. This 
illustrates that, as pointed out earlier, in such 
models the estimated low-dose tumor risk is 
determined by the empirical form assumed for 
the dose response of the intermediate step(s) in 
the progression to toxicity.

Perhaps the most ambitious attempt to 
date at BBDR modeling is the model for can-
cer risk in the human respiratory tract from 
formaldehyde-induced nasal cancers observed 
in the F344 rat (Conolly et al. 2003, 2004). 
This work implemented a two-stage clonal 
expansion model of cancer (Moolgavkar et al. 
1988a) and incorporated results of 20 years of 
research into formaldehyde carcinogenicity. 
Included in the model are data from two large 
rat bioassays, modeling of flux of formaldehyde 
into respiratory tissues in both rats and humans, 
data on proliferation rates of cells in the rat 
nasal epithelium, and data on formaldehyde- 
related levels of DNA–protein cross-links in 
rat nasal tissue. Conolly et al. (2004)claimed to 
provide conservative estimates of human risk, 
and based on the model it was concluded that 
cancer risks associated with inhaled formalde-
hyde are de minimis (≤ 10–6) at relevant human 
exposure levels. 

However, a sensitivity analysis of this 
model (Conolly et  al. 2009; Crump et  al. 
2008, 2009; U.S. EPA 2008) found that small 
changes to assumptions regarding the math-
ematical form of the dose response assumed 
for the division rates or death rates of initi-
ated cells—changes too small to meaningfully 

degrade the correspondence of the model with 
the underlying data—increased estimates of 
cancer risk from formaldehyde by several orders 
of magnitude over those considered to be con-
servative in the original work. It is unlikely 
that this problem could be resolved by getting 
data on these rates, because the inherent vari-
ability in such data exceeds the range of the 
small changes made in the sensitivity analy-
sis (Crump et al. 2008). This illustrates the 
inherent uncertainty in estimates of low-dose 
risk resulting from the uncertainty in the dose 
response for intermediate events.

The formaldehyde model also illustrates the 
formidable issues that must be faced in the dif-
ficulty of using animal data to estimate human 
risk. In this model, parameters estimated for 
rats were converted to human values by either 
scaling up the rat values or by simply using the 
value estimated from rat data. The quantitative 
uncertainty in such methods is difficult to esti-
mate, but it is likely to be large, given that often 
there is not even site concordance between 
species. In the particular scaling method used 
in the formaldehyde model, the human risk 
was particularly sensitive to the background 
tumor rate in rats. To better estimate these 
background rates, Conolly et al. (2004) added 
historical control animals from all National 
Toxicology Program (NTP) bioassays to their 
analysis. However, the tumor rates in these 
added animals are statistically different from 
those in the historical controls drawn only 
from the inhalation NTP bioassays and are 
likely to differ from the background rate in rats 
in the formaldehyde bioassays because of dif-
ferences in genetic makeup, handling, or living 
conditions. Consequently, the reduced statisti-
cal variability from adding historical controls is 
accompanied by potentially decreased represen-
tativeness of the control data. Indeed, different 
choices for control animals to include in the 
model can make orders of magnitude differ-
ences in the estimated low-dose risks (Crump 
et al. 2008; Subramaniam et al. 2007).

General discussion. Much of the enthusi-
asm for use of BBDR modeling in estimating 
low-dose risks may result from a general aver-
sion to the default methods contained in U.S. 
EPA guidelines (e.g., U.S. EPA 2005). There 
seems to be a sentiment that even given the 
uncertainty in risk estimates obtained from 
BBDR models, use of such models must be 
an improvement over default methods. We 
do not find this sentiment to be supported 
by the evidence. Although we are not claim-
ing that the default methods consistently pro-
vide accurate estimates of low-dose risk, we see 
no evidence that BBDR models developed to 
date have reduced uncertainty in estimates of 
human risk or generally provided greater bio-
logical support for estimates of low-dose risk. 
For example, a sensitivity analysis of the form-
aldehyde model (Crump et al. 2008) showed 

that small modifications to the model that 
did not affect its agreement with data could 
produce estimates of low-dose risk ranging 
from negative up to values far larger than risks 
predicted by the U.S. EPA default method 
based on linear extrapolation from a point of 
departure (U.S. EPA 2005).

Although implementations of BBDR 
models for low-dose risk estimation have thus 
far been limited mainly to cancer modeled 
using a two-stage clonal expansion framework, 
we believe that the problems we have identi-
fied are not restricted to a particular disease 
or to a particular class of models, but will be 
present in some form in all attempts at BBDR 
modeling. For example, it seems unlikely 
that empirical modeling on some level could 
ever be eliminated from a BBDR model. As 
a result, we agree with the NAS committee 
(NRC 2007) that BBDR models are unlikely 
to be useful in low-dose risk estimation in the 
foreseeable future.

This conclusion seems counterintuitive: 
It might seem that more and better biology 
should result in better answers. Unfortunately, 
that does not seem to apply to the answers 
that are, at best, only inconsequentially better 
when applied to the problem of quantifying 
low-dose risk. Weinberg (1972) used the term 
“trans-science” to describe “questions that can 
be stated in scientific terms but are in principle 
beyond the proficiency of science to answer,” 
and used low-dose extrapolation to illustrate 
trans-science. The intervening years have only 
added credence to Weinberg’s judgment.

We are not recommending against research 
toward developing BBDR models, because such 
models have many potential uses. However, we 
recommend that before a BBDR model is used 
to set human exposure standards, the under
lying assumptions, the choice of data, and the 
modeling choices be examined very carefully in 
view of the limitations of such models discussed 
here. Because critical assumptions in complex 
models can be hidden in the complexity, such 
an examination should include a thorough sen-
sitivity analysis that evaluates the robustness of 
model predictions to other plausible assump-
tions and data interpretations. Particular care 
should be taken in assessing the degree of scien-
tific support for elements in the BBDR model 
that critically affect low-dose risk estimates.

Future efforts to develop BBDR models for 
risk assessment should consider the resource and 
time requirements vis-à-vis the potential ben-
efits from a BBDR model and the likelihood 
of success in achieving those benefits. Even if 
BBDR modeling to support low-dose risk esti-
mation was superior to other approaches, the 
data and modeling effort required are of such a 
magnitude that the approach cannot be applied 
to more than a tiny fraction of the 82,000 
chemicals now in commerce, most of which 
have been subjected to only very limited toxicity 
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testing at best (NRC 2007). Widespread use of 
limited resources in developing BBDR models 
will only further exacerbate the present seri-
ous problem presented by this huge backlog of 
chemicals for which risk assessments are needed 
to support exposure standards.

In part as a possible way to address this 
backlog, toxicity testing is currently being 
revolutionized to take advantage of advances 
in molecular toxicology and high-throughput 
screening. These in vitro methods have the 
potential to allow chemicals to be tested at 
greatly accelerated rates and reduced costs and 
to reduce or even eliminate the need for testing 
in whole animals (Collins et al. 2008; NRC 
2007; NTP 2004). Given the obvious short-
comings in the present approaches that empha-
size testing at high doses in whole animals, we 
support efforts to move to new approaches for 
setting exposure standards that use in vitro data. 
Some have proposed the use of such data and 
computational systems biology for describing 
biological circuitry to develop BBDR models 
for estimating low-dose human risk (Conolly 
2008; Kenyon et al. 2008; U.S. EPA 2006). 
However, we are concerned that use of in vitro 
data in complex predictive models to quanti-
tatively inform low-dose risk will exacerbate 
many of the problems described herein.

Conclusions
Although BBDR modeling held great prom-
ise as a tool that would enhance our ability to 
better incorporate scientific knowledge and 
multiple types of data into the estimation of 
low-dose risk, that promise has not been real-
ized. Instead, BBDR model–based risk esti-
mates appear to be as uncertain as those based 
on empirical modeling, if not more so. The 
problems discussed herein appear so intrac-
table that we conclude that BBDR models are 
unlikely to be fruitful in reducing uncertainty 
in quantitative estimates of human risk from 
low-level exposures. Given the cost in time and 
effort to obtain data for these models and apply 
them to risk assessment, we do not see this as a 
sustainable approach for the future. There is, 
of course, still hope that this will occur, as the 
basic premise under which BBDR modeling 
was pursued for risk estimation is conceptually 
valid. However, it will take a technical break-
through to meaningfully overcome the prob-
lems discussed in this paper.

Recent advances in molecular toxicology 
have as their strength generating understanding 
of the processes by which toxic agents produce 
their effects. Mathematical models of molecu-
lar toxicology data may make important con-
tributions in developing this understanding. 
However, it is less clear how such models 
can be used quantitatively to inform human 
risk at low dose. Not only will such models 
be subject to the problems discussed herein, 
they will introduce new difficulties related to 

extrapolation of data from in vitro systems. 
Before committing large amounts of resources 
toward development of complex models from 
in vitro data for use in setting human exposure 
standards, we urge careful thought be given to 
how such models will be used and the uncer-
tainties inherent in those models. Alternative 
decision-making approaches that do not 
require such models should also be considered.
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